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O. FOREWORD

The work done during the period covered by the present FINAL Scientific
reports pertains to the following topics related to the application of

functiconal analysis in fluidmechanics:
1) Variational formulation of non-linear boundary value problems;
2) Closed splines.

Tre present Report is divided in two parts.

The first part describes more or less concisely, according to the needs,

the work which has already been extensively reported in available publications.
It consists of three chapters dealing with : a) A class of non linear
boundary value problems; b) Applications of closed spline functions;

¢) Numerical sperimentations with closed splines.

lhe description of the nature of this work and of the publications it has
originated is given in what follows,

As a natural development of the research program on applications of

“unctional analysis to fluid-mechanics, the main objective of the

novt ctage of the investigation was clearly to be identified with the
extension of the results found for linear problems to as large a class of
ron-linear problems as possible.

A first positive step in this direction has been accomplished.

The following problem has been investigated and solved: variational for-
mulation of the non-linear problem R(u):wt)(u) where A is a positive
definite, formally self-adjoint operator in a suitably defined Hilbert

space H of the functions (4 ) and vp is a Frechlt differentiable non-linear

operator defined in H.

A first version of a paper describing this work and co-authored by the
principal investigator and by Pr. C. GOLIA has been presented at the Third
Congress of the [talian Association for Theoretical and Applied Mechaniecs

(ATMETA) held in Cagliari (Italy) during the month of Octcber, 1976 f'ﬁwf. !? i




In the preprint of this paper acknowledgment to AFOSR support
was inadvertedly omitted and only the sponsoring received by the second
author was acknowledged. This error will be corrected in the second

version of the paper (see later).

Further studies on the subject have led to a much improved formulation

and solution of caid problem. This has resulted in the paper:

1. L.G. NAPOLITANO, C. GOLIA: " Dual Variational Formulation

of a non-Linear Boundary Value Problem"
which will be submitted for publication in an International Journal.

Since the first version of the papar is available [%ef. l:] and the
final version presents only formal improvements of the first one, only
a concise description of the results needs to be given. 1T..is will be

found in Part I of the present Report, chapter one.

The activity concerning closed splines has been concerned with:

i) working out applications of the closed spline functions introduced

by the principal investigator (hef. 2-]
ii) carrying out numerical sperimentation with these closed splines

iii) defining and studying the properties of a new class of closed splines:

the Hermite closed splines

The definition, characterization and properties of closed splines were
described in the Final Scientific Report of the previous Grant AFOSR
76-2889 [ﬁef. 2 ]. These new classes of splines yielded interpolating
functions for closed curves and possess all the properties of spline-
functions. Conventional approaches still largely use conventional
splines to interpclate closed curves: the analysis reported id [3] 11lus-

trates the many shortcomings of such an approach and shows how markedly
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superior is the use of closed splines. To clearly substantiate these
theoretical predictions it was felt appropria¥e to work out some examples
of applications.

The problem of interpolating significant airfoil shapes was considered
and results obtained from classical and closed-splines formulations were
compared.

These examples of applications of closed-splines are described in

Part I of the present report, chapter two. They were included in the
Laper:

2. L.G. NAPOLITANO, V. LOSITO " The closed splines functions"

which has been accepted for publication in the "Journal of Computational
Physics".
Once the theory of closed spline functions had been developed, the next

stage of analysis was addressed. It concerned a number of questions

related to the optimal use of closed splines in a computational scheme
and called for extensive numerical sperimentation.

This phase of the work is completed and its results aredescribed in the
following paper which has been accepted for presentation at the Congress
of the Italian Association for Aeronsutics and Astronautics (AIDAA) which

will be held in Milan, during the last week of Septebmer 1977:

3. L.G. NAPOLITANO, V. LOSITO and A. VITIELLO "Numerical

sperimentation with Closed Splines "

For this reason only a concise summary of theproblems addressed and

of the results obtained will be given in Part I of this report, Chapter

three.

The second part of this report describe 1 extenso the third development
of the research work on closed spline, 1.c. the one related to Hermite

closed splines.

y




PART I ~ SUMMARY OF WORK ALREADY PUBLISHED

1.1. INTRODUCTION

As mentioned in the Foreword, this first part of the report describes
concisely work which is already available or will shortly become available

in published form.

1.2. DUAL VARIATIONAL FORMULATION OF A CLASS OF NON LINEAR BOUNDARY

VALUE PROBLEMS.

The following class of non-linear boundary value problems A (“J = ﬁ“)has
been considered, where A is a positive definite, formally self-adjoint
operator in a suitably defined Hilbert space H of the functions ( u ) and

f is a Frechet differentiable non-linear operator defined on H.

First the conditions on f which allow a strong variational formulation

of the problem have been determined. It has been found that these conditions

reduce to the symmetry of the non-linear mapping f ().

Subsequently the hybrid strong variational formulation has been derived from
which the dual variational formulations have been obtained as particular

cases [see Refs (5 (6? originated under a previous grant for the meaning
which is ascribed to hybrid functionals in the subject conte;g].

Finally, upper and lower bounds for the exact solution and error estimates for

the approximate solutions have been found.

The approach used is based on the search of an hybrid functional by means
of integration, in a certesian product of two suitable Hilbert spaces, of
a gradient. Immosition of the integrability conditions and of appropriate
stationarily conditions leads to the requirements on A and f that must be

satisfied for a strong variational formulation to be possible. The subsequent




developments are based on more or less straight-forward application of

functional analysis results which are either classical or were obtained

during previous grants: [Refs. (5) ,(6)]

1.3. EXAMPLES OF APPLICATION OF CLOSED SPLINES.

A number of numerical techniques for the solution of }Sla.nar inviscid flow
fields around airfoils require knowledge of the pa.ramc;tric equations

X (_’C)/ Z("C) of the airfoil's profile in terms of its arc length Z.
These equations must be found by interpolating the data Zi‘ C)(‘:}representing

the ordinates of the upper and lower profile at a number of stations x;.

The arc length Z is, of course, not known & priori and the problem has to

be solved iteratively. A possible procedure is as follows.

Assume as curve parameter the length w measured along the polygonal con-

necting the assigned profile points Pi to obtain, from the data Zy = (xi)

two sets of values:
fweyxs ] 4w, ez ()

where w; = w(P;)

From these two sets construct the two interpolating functions x(w); z(w) and

wcw-/[ﬂ (e )]

The quantity w(l) [which would give the profile's arc length if x(w),

compute

z{w) where the exact parametric equations of the profile in terms of w ]

is taken as the new curve parameter and the cycle is repeated. From the




{
L8 NS 1 ol ) : } ’/
new sets of values { WL’ P XL}/ II M{: J 2;-" Z([‘J [where ué=
W “/7. )
w /(W‘:)]two new interpolating functions X=X [“/ ]/ = Z[W are
2)
constructed, & new curve parameter WL (WU/ determined and so on.

(t

) ) .
The iteration terminates when / /{/ = /4/( neax 18 smaller than a pre-

2 . 3 (r . il
-assigned small quantity for then the r-th iterate w ) pratically coilncides

with the arc length ( 2 ) and the functions )([W (t)L'Z[WUL_}/(ikewise

coincide with the interpolating functions X(t}/ Z(Z) .

At each cycle the procedure requirles the construction of two interpolating
functions X [W ()l]/ Z[h/ UT] . In the examples to be discussed here
conventional and closed cubic splines (gq=2) with several values for n are
considered.

The interpolating functions based on conventional splines are denoted
without any subscript and those based on closed splines with a subscript (c).
To simplify the notations, primes will always denote derivatives with respect

to the pertinent parameter.

According to the results of the theory, [see Refs ((2) /(3}]f'or any (n) and
at each cycle: xc" % xé', zé, z(':’ will be continuous everywhere, x' and z'
will be discontinuous at the closure point, x'' and z'' will be continuous

everywhere but will vanish at the closure point. Hence, at this point,

the conventional splines will yield an infinite radius of curvature R.

To facilitate comparison with exact values a family of elliptic profiles

is considered, which is defined by the equations x = i(l-cose), z =f/2 sin @
where O is the polsr angle and 0.5 £ g € 1 is the thickness ratio.

The closure point is the point corresponding to 6 = 0 and the other points

P.l correspond to constent increments in 6.

The question of the optimal location of the points Pi is an interesting one
and becomes very important for low values of E . It will be addressed in

the next paragraph.




The discussion will be limited to the final interpolating parametric

curves x (Z ), z (2 ) as in all cases considered the iteration converged
very rapidly (at most two cycles were needed).

Due to the symmetries of the airfoils and to the choice of the points Pi' the

discontinuity in the drivative z' at the closure point turns out to be zero

+
whereas that of the derivative x' is equal to twice the value of x' at 9= 0 .

The values of the discontinuities x' at the closure point for different
values of (n) and for elliptic airfoils (SD= 1, .75, .5) are shown in

Tab. 1. Obviously they do decrease as n increases, but the point here

is that a much better result (vanishing discontinuities) can be obtained at
no cost (i.e. without having to increase the number of subintervals) with the
use of closed spline functions. Tab. I also shows that things get worse

as g decreases: the same trend will be found in all other features.

Values of the derivatives dx/d £ and dz/d  are shown in Tab. Ila through
IIc for the same three values of §> and n=8. Due to the symmetry of the
profiles only values for 0 £ Q<7 are listed: the first column gives
the exact values, the other two columns give the values obtained with the

closed spline and the classical spline, respectively.

As anticipated in Refs (2), (3)

i) the discontinuity at the closure point is associated with poor
accuracy in its neighborhood. Thus, since le# 0 whereas Sz' =0 at
the closure point, the accuracy in x' is worse than in z' in its
neighborhood. Tables II show that both accuracies decrease as @
decreases and that the results yielded by the ¢losed splines are far

superior to those given Ey the conventional ones;

ii) the discontinuity at the closure point influences the behaviour of
the interpolating function throughout. Thus, for instance, the inter-
polating functions based on classical spline fail to exhibit the symmetry
properties dx/dz(‘ﬁ/,e +9) = dx/d 2’(1/2 - B ) and az/aT | 77/2 + @) =

- dz/dT (71’/2 - @ ), which are instead satisfied by the interpolating

functions based on closed spline;
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iii) as one moves away from the closure point the "smoothness properties"
of the interpolating functions based on classical spline tend to
approach, at a rate depending on the curve to be interpolated, those

of the interpolating functions based on closed splines.

Exact and approximate values of the radius of curvature R were also analyzed

for g: 1 and 9= 0.5 with n=8. The analysis confirmed that:

1) the classical spline interpélating function is vastly off in the
neighborhood of the closure point, whereas the closed spline gives there

very satisfactory values;

£) the performance of the classical spline approaches that of the closed

spline sufficiently far away from the closure point.




Discontinuities  &x'

n when elliptic airfoils are approximated by means of classical

splines.

TAB. 1

at the closure point for aifferent values of

Elliptic Airfoils sx!
Percentual Thickness
P n=8 n=16 n=32
1 .4944 .2322 L1139
.75 i . 14840 . 3306 1546
.50 1.1310 .5546 2444
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1.4. NUMERICAL SPERIMENTATION WITH CLOSED SPLINES.

As discussea in the previous paragraph the performance of closed-splines
interpolating functions tended to become worse and worse as the percentual
thickness ( g‘) of the elliptical airfoils decreased.

This tendency is to be ascribed to the fact that, as 9 decreases, the
curvatures at the leading (and trailing) edges of the airfoil increase
whereas that of the central part decreases. Hence there was a clear
indication that an uniform polar angli"spacing of the data points Pi is

not always adequate.

The optimal distributicn of a prescribed total numer (n) of points Pi
constituted the first objective of numerical sperimentation with closed

spline.

The obvious speculation was that the points Pi had tc be '"concentrated" in the
large curvature region. Numerical sperimentation confirmed this speculation
and showed a marked improvement in the accuracy of the interpolating functions
with the use of cubic closed splines.

These encouraging results point to a very promising area of further theoretical
research, namely that of optimal location of data points. Some preliminary

suggestions on possible theoretical approaches are given in the paper mentioned

in the Foreword. Zéef (3;}].
oQ
The re%gtion remedy is naturally applicable only when one can prescribe
arbitrarily the position of the points Pi.
Wher. this is not the case, i.e. when both the total number of points and

their locations are given, the alternative may seem to be an increase in the

degree (7)of the closed spline.

Extensive numerical sperimentation proved however that in general, this is
not so. It turned out, indeed,that for each number ( n ) of points

Pi (and given distribution of them) there is an optimal value q, of the

———————————



degree of the spline that gives the "best" approximation. Or, equivalently,
for any given degree of the spline there is, for a given distribution; and

optimal value n of point P, which yields the "best" approximation.

The optimal value 710(;q ) increases with q. Thus, as stated, it is a
fallacious illusion the one that, for a given fixed number of points Pi
and a given distribution of them, hopes to increase the accuracy of the
interpolation by increasing the degree of the spline. This will be the
case if and only if the initial degree of the spline is less than the
optimal one corresponding to the given number (n) of points.

This being the state of affairs the true problem is then how to improve
on the accuracy of the approximation when both the number of points (nad
their distribution) and the degree of the spline (at its optimal value)

are fixed.

Also for this problem some preliminary suggestions are offered in the

paper mentioned in the Foreword LRef.( L)j]
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PART 11

HERMITE CLOSED SPLINE FUNCTIONS

by

L. G. NAPOLITANO

1. INTRODUCTION ?

In computational aerodynamics it is often necessary to solve interpo-
lating problems related to "airfoils", i.e. to closed curves,

Using classical spline functions to interpolate airfoil's ordinates
prescribed on a finite set of point is unsatisfactory, and on many
important accounts (;] and a markedly better approach is afforded by
the closed spline functions Ii].

A similar situation arises when the data to be interpolated represent
values of the functions and of its first derivative at a given set of

points.

R s __4“M___m;z====uuu--u-lllIllIllIlI-l""""""""""'-'.-.--..‘.‘
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Consider indeed the problem solved by classical Hermite spline
functions.

Given & closed interval, reduced through suitable normalization to

L 0 l_] (n+1) points -PL Cz": ) with:

= & - -~ 2T =4

and (2n) real numbers (ri); (ri') ( /) £ t: < M +/) the interpolating

Hermite spline function of order < 11 { corresponding to the
(n + 1) pomts P and to the sets {’Z f) { ’Z } is the unique
function G’ & H [0 17 which solves the following

minimization problem:

1
b A
= o

Y2 T (1.1)
j(zo> ¢ (/ﬁ[_fn‘f/)
Jiz)= ¥

/ -

where gcz)denotes the first derivative of g(z) and H ZOI ,]

is the Hilbert space of real functions C’(‘;) def‘ined on (:0/ I]and
having a square-integrable q-th derivative C“)
The space H‘ L O /] quantifies the nntion of "degree of smoothness"
of the ilnterpolating curve.
The Hermite 1nterpolat1ng splmes belong to the 2 C‘VL-I /) dimen-

ional subspace g H [_[' /] of renl functions j (C)

defined on Col {]and such that L._ J

AC@) is a polinomial of degree (2¢-1) in cach of the open
. Lo od N
intervals ] ‘L; ”L ( L s )

/o . P 3 © : : e & F
,", (_(.Jﬂr'fx 1ty rirst (2¢-3) deraivatives are conbliuous oun WYl

—
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(o
¢) the derivatives of SCZ') from ordersVto (2q-1) vanish at

the points Z' = 0, Z;+'= M

Such an Hermite spline is given by [2]:

Z-Z

nz ,(Cc Z') + /( CZZ/L
§l ikt @l @Byt

(1.2}

3
>J.:OE)

R
k CZ"Zé)_, ‘/lf (Z 2.) (1.3)
T-T) =
L )+ 0 L‘V{) (z-z) <0

- Q-I/

and the 2 (n+l) coefficients 1-, /< satisfy the g equations:

M‘[M(z)*k,( ( kl] @ (1.4)
s [o< ks 9-’]

(with the convention that k Z =0 for k =0).

By imposing the 2(n + 1) additional requirements

~ R it £
5(22}3 Z. ) A (Z'.,)— z.' [£csnr] (1.5)

ol
the [q +2 (n+1) ] coefficients F A A o are uniquely determined

[ ]and so it is the resulting Hermite interpolating function G—CL)
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solving problem (1.1)

If the data to be interpolated correspond to a closed curve then: E= ln_”
(closure point ))‘ ¥, = tn.-fl ) t,l= Z:L_” and Z is to be inter-
preted as the curvilinear coordinate of a sufficiently smooth and
regular closed contour C normalized with respect to its length [1 ] .
If, to interpolate these data, one uses the classical Hermite function
ECZ )= '; CZ) [ where g('c)is defined by (I '2_) through (1.5)
with 2’ t"“/’f!, Z then G(Z)wlll indeed have the above mentioned
spline properties in each of the (n) open sub-intervals JT Z'“[_ (l‘(/ cn '”)

However, at the closure point ‘P, -P,n” 5

i) the conditions &, = tﬂ“/' Z,'c Z,’ﬂigua.rantee only the continuity
of the function and of its first derivative; the other derivatives, up
to the order (gq-1), will not be continuous [unless the location of
points ?{' and the dats sets {‘Cc' 3) { Zl: _{ satisfy particular
srin.metry conditions J , their discontinuities being uniquely determined;

[upon the uniqueness of the solution of problem (1.1)]}

ii) the subsequent derivatives, up to the order (2q-3), are continuous

= -
but vanish identically I_upon the propertis (b) and (c) of 4 (2’)]/'

iii) the discontinuity of the remaining derivatives are likewise
umquely determlned that of the (2q-2)-th derivative being equal
to (,( ,("_” ) and that of the (2q-1)-th derivative being equal to

(,(.-,(“” 3,

Thus, as for the problem considered in [l] » the use of conventional
Hermite spline functions for closed curves presents a number of shortcomings.
Unwanted sicontinuites are introduced at the elosure point and the vanishing
of the derivatives from orders q to (2q - 3) may be too penalizing,

especially for low values of q. In addition, always because of point i)
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above, the -terpolating function does not belong to HY (C). Hence,
its "degree of smoothness" is not characterized and, perhaps more

~
critically, ¢ does not satisfy any minimum problem.
These shortcomings are climinated if one uses the notion of closed
splines introduced by the author in [1] and constructs a new class of
such cplines, the Hermite closed splines, constituting, as the others,

-~ - " ¥ - v} - | > 1 ¢ 2 $ f e ] $ 5}
a suhsrace ol n Cre The present papel 1o JdEVOLEL LI wild UaSK.

The approach to be used to construct and study Hermite closed splines

is based on the abstract-space spline thecry detailed 3n E:J.M“‘-u 15

perhaps appropriate tojustify its use.

One might argue that all one needs is the introduction of (q-2) additional
parameters to impose the missing continuity of the derivatives from

orders 2 to (q — 1). This speculation is substantially correct. The

resulting interpolating spline would have a total of [qi' 2(7”* () *9 ’2]" 2(7 'm')
parameters and would essentially coincide with what we call a Hermite

ciusee rnterpolating cpline. lHowever one would teel at loss as to how

actually to proceed, and, more fundamentally, questions related to

existenre sand uniguep~se of sueh interpnlating functions would be left

unanswered. Furthermore it would be difficult to ascertain and eventually

establish the equivalence Letuewn the interpolation problem and a
minimization problem  to identify the subspace generated by these "splines'z
to describe their extremal properties and so on.

¢l! *hes= guestions, by contrast, are most simply resolved by using
abstract space spline theory.

As in [+ ] , to facilitate a wore wide sproad crmprehension, the definition

characterization and properties of Hermite closed-splie functions are

first stated without sroof in paragraph (2).

Existence uniqueness characterization extremal and other relevant
properties are proven in paragraph (3), wherein for completeness' sake, the

per binent needed resnlts fram the 'Tilhert ~nace +heory of spline~functions




22

are also concisely recalled.
As this paper employs, with few variants, the same approach developed
in [1]it will be rather more concise and reference is to be made

to [l Ifor missing details.

2. DEFINITIONS, CHARACTERIZATION AND PROPERTIES OF HERMITE CLOSED SPLINES

a) Definitiong

Let C be a sufficiently smooth cleosed contour. Denote by ¢ the curvi-

linear coordinate along C measured from an arbitrary initial point Py
and normalized with respect to the length of C, so that O£ T £ 4 .B)
to be referred to as the closure point on the contour, is characterized

e
=47

by either value 2 = 0 it

/) 7 _
Consider (n) arbitrary successive points (e (lé L f%n C: 1let Z.be their
5

curvilinear coordinates with:

‘:> = Z.I < Z 2 & (.3 o o e o e E & :1
h A '
seri (2n - numbers P L ’
and prescribe ) real numbers P %" =

The Hermite closed interpolating spline § of degree (q) corresponding to

the (n) triplets (2’;/ ‘2512‘:’) (| £¢ &£ 7 ) is defined as the unique

element of HA (C) such that:

% [ ]l :VPW? g Yf("}(a)] oz e
C & C

I- YPG//?(C) / QF(Z():‘L“}'VPI('ZJ): z:,’/- /¢ (<n
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In order for 0"& HY(C) to be such a Hermite closed interpolating spline

it is necessary and sufficient that:

) 6 bve a polynomial of degree (2q-1) in each open sub-interval

]O:Z‘/Zz[/”“" ]?Z/ zb’f/[/-“ -Jzﬂljz;.

b) O Dbe continuous, on C, together with its first (2q - 3) deri-

vatives, 1.
(%) ,,. -
o '\c;)«-;‘ (o) s #e&ld, =]
¢) O ve such taht

/ s . = c /
(T(TL'): £ / G(Td): ’Z[, e Ladas [/nJ

The set of functions ﬁ(l’) € H (C);:atisf‘ying the first two conditions
constitutes a subspaces [the space of Hermite closed spline functions

corresponding tc the set {Z:-j}o:‘ dimension (2n).

b) Characterization

'
An element of H2(C) belongs tc the sulspace S >t Hermite closed splines

He

corresponding toézb'fif‘ it is representable as

Zq-j o a ~1 / 2&]" &~
,(_?_ +ZZ£_@_Z)} L A (Z’Z—;L / '2,2)
it e-gr (29-2)]
I
where the (2n) coefficientg /,:/ /(A:mzi the (2q) coefficients E satisfy
C
¢

the following (2q) equations:




(2.3)

.

Lo £+ ’ ::}/
= r+ A7
= Be"%tfa' +1) JZ—[ 2 3 ]f el
)/

(e-4)! (e /-/)/

The functions (8‘2}) is defined by equation (1.3): it is continuous on C
+
together with its firsl(k - 1) derivatives and its k-th derivative is dis-

continuous at Z= Z‘; , the discontinuity being equal to (k -/} [2]‘

The (2g-1)-th and (2q-2)-th derivatives of s ( ) are given by:

5(3‘3 :)CZ,)_ E -,+§ J" CZ-Z’L +o
Cr%z)- B B2+ [A(7) A (-7 )0 ]
2§-2 '2§-( ¢=4

Hence:

i) the (29-1)-th derivative of s ( 2 ) is piecewise constant in each

e
open sub-interval. Specifically it is equal to ( p L0 /{/ )

' 24~ =
i J2¢ [,(1¢¢ne1) ana to Eq in ]g—an[d . Thus the (n)
_’ R
coefficiente . represent the values of the discontinuity:
E 28-4) , .
(28-1) s el #0 *) (=4 (<
%4 (P.:):i (od=vd e )
. ¥ - -
at the Points P.. Notice that for ¢ =/ it is 7, :Ot‘ €= ! ; thus

(28 ‘)(p) L8pm) 8901 ?g?, JB.?J— A,

ii) The (2q-2)-th derivative of s (Z) is piecewise linear in each open

sub-interval. Specifically, it i§ equal to
s — /
B.. *B 2+ & [l
G oy
12 28 7 ‘

_] 2'.;/ ZL* IZ/ (I f(::'n ‘j and, on account of eqs (2.3) and (2.4)
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flor © = 1, to

R

2 8-
His! (29-2)

in J'[ﬂ_l | [ . The discontinuities of 4 at the points /PL

are thus given by:
l

@Z)ZJC?) s [ (inlfn)
5? (V)= quz*’("ng_

Hence the coefficients /4 + represent the discontinuities of the (2q-2)-th

|
N
>
-

derivatives of s (Z ) at the points P [/4 L < ‘77]

Notice how the closure point ( F?) is in no way differentiated from the
other (interior) points.

Given (2n) arbitrary real numbers ZZ/ Qtl, thre is & unique Hermite closed

spline corresponding to the set -}_2:; such that:

sl )=k o, Sz, (12ifn) (2.5)

Consequently, the system of 2(n + q) equations (2.3), (2.4), (2.95), i..

~ S 1R NS A LEaBARE 20 Wl , : 4 Ll

o / -

2 (n + q) coefficients appearing in the unique interpolating Hermite spline

function U(’z;)which solves the minimum problem (2.1).

c) Properties

r eny alement AL S and agy fwiction .Oé /-/é/)it is: “
Re
(g) /
u)i. n’}PU“)J(_= ')72.[/( J(“ /( !(21 ] (2.6)
e

‘e
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In particular:

'y WCC}V?M/Z) ofz =0 &
tpe Lo el [q)-f =0, Fie [,71f

The minimization problem (2.1) solved by W(’Z)is a particular case of

the following more general extremal properties.

-—

Given (n) arbitrary but fixed c,
of.S“csuch that O (7, )=%/ G(Z} Zthen,

A) Forauy fe I.
47 Gm ‘?(ﬁ)] gh: it [ i f@/]zgr/z (2.8)

:seS

'3 t1 © is the unique element

and any other element G of SHhaving this property differs from § by
(&

a constant;

B)f‘or any A6 SHC g

O A L

and G is the unique element of I having this property. (IL
If the r.h.s. of equations (2.4) is denoted by lz , the discontinuity g CP)
of the k-th derivative of A at the closure point P, is given by

Uz)
(%) - zq k-1

T T p——
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Hence of the (2q-1) homogeneous conditions given by equations (2.4) only
the last (2q-2) correspond to the required continuity conditions at the

closure point. The remaining one (for = 1), which reads:

z
t l
% ? »i ’Z ,{b' Z‘: + 2 /(‘: = O (2.10)
L.:I

3‘}" c=!

simply expresses, ss equation (2.3), obvious congruence conditions for
the discontinuities.

Indeed, if h(z)is any function discentinuous at the point I and if we
e, el

sA(w) h(7%) ~h(Z,

h(zh, )-h(z')= Bkt A(P,{,)

so that, by summing for (i) from (4 ) to (n) and considering that,

let:

then,

+
by the definition of the closmg point, P P, Zy“‘ 2 =0 one obtains

that the discontinuities /= (l ) must sat1sfy the "congruence" con-
dition:
h + > /L (P.): 7
e N (29-1)
which 1s really checked to reduce to equation (2.3) for h (z') [} ( F

aadlgli, ?b)_ 1 ] V'fo equation (2.10) for h (Z) = (22 _ Sh= /l ano

it is accounted for the fact that:

) (24~)
A" A(ZS U(z) = 4 ('z"* - ZL')

(8 +ZM( -2: )

g = /:I
P i (29-¢)

S, is the constant value of 3 in the

subinterval J 2'\',/ 2":4 ( L and S S [ - Z' = 0.
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3. HERMITE CLOSED SPLINES: PROOFS OF EXISTENCE UNIQUENESS AND
CHARACTERIZATION

Proofs of the statements made in the previous paragraphs hinge on the

Hilbert space formulation of spline-functions theory detailed in [2] s

For the sake both of self-completeness and of ready reference the basic

results  as directly specialized to the present needs/ are briefly summarized.

A slightly more general formulation was given in [l] : greater details

are to be found in [2]
a
If C i';Vgufficiently smooth and regular closed contour, consider the

two Hilbert spaces X-‘- ”qé)a.nd y: HO(C)with their standard inner
products [denoted by € ; g and & > H® ] and the

H C’ o
linear continuous operator Dﬁ' /—/ (CJ—)# (CjwhereD(?denotes the q-th

derivative with respect to the previously defined curvilinear coordinate

ze lo /J , normalized with respect to the length of C.

Finally let (2n) functionals h/;) K,,’l-' '//7@) = R be defined by:
L’
<K, xOpq=x(z: )=k xe X=H'(©
< K

with:

1]

(3.1)

X'(7:)= €/ jst &%

H
O T, &8 Ty #.6anams €T % 4

n
By letting Z 4 R. ,8 finite dimensional subspace, and

Z'Ctut?—/ "‘/t"l/tlllt?’/ R tn) € L

equations (3.1) define an operator A: H,(C) —> Z and, for any

fixed 2Z, a subset Iz of X, supposed non empty:

1 ={x6 X})QX=2}

P4 (3.2)
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The null spaces of the operators A and Dq are given by:

N(ﬂ)=Io:{"é#e(c)/(’(f/*%/q-<‘(c x>”7~0/' /sisn_;
N(Df,’ z‘x&/ﬁ@) (9} 0} {xe#’(c)/x:mé.j

Their dimensions are equal to (2n) and to

N(_Dd}) N N(A}¢provided n > 1.

one, respectively, so that

Hence, l?}, the minimum problem:

. - v
95[0.(631(2 )] Zg/z - x'n;u} f[ X Q}CZ)]O/C

<
3 (3.3)
Zf,(t{ﬁ(c} /u( x) s x(z )=t ‘(U,X>M=
2z
-X(Z) )( ' /1$C £
o 8y 5 L
ha.b a unique solution G- ¢ [ C //?(C) s for any Z, as long as no> 1.

This unique element‘£ I is herein called the Hermi te 1nterpolat1ng
closed spline corresponding to [ Hq(c) H P :b

The (2 n)- dimensional subspace SHC - /L/ (CJ of the Hermi te

closed splines is defined by :

S {se//’(c)/U) 3 D x>-0 Vxé/‘/{ﬂ)-l'} (3.4)

and, for any 2 ¢ Z » there exist a unique element G'é S
that

such
R(T 2. It nas the extremal properties described by equatlons
(2.8) and (2.9) [2].
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Existence and uniqueness of the solution of the minimum problem

(3.3)[§nd. hence; of the problem (2.1) ] is thus proved.

Proofs of the characterization and properties of the Hermite closed
interpolating splines discussed in the previous paragraph hinge on

the following theorem [2]

Theorem 1

o & I is the r‘losed Hermite interpolating function correspondlng

/

o | ,6]) K‘/ K t' t ) if there exist (2n) coefficients /(‘: and '(o

such that:

5= & (J ke Al K )e [Vom) ]t

‘D"}“i e (3.5)

{ - ]-L "
Here D,? denotes the adjoint of D, and L the orthogonal subspace.

?

The demonstration, with few variations, is substuntially the same as that

employed 1n [l] and only the essential points will be detailed. "

The definition of adjoint, eq. (3.5) with
']

¢

" : §-1
de= GV ) Ay =C1) A;
and equation (3.1) lead to:

< Dyo, Dy x 2yo = ﬁ ("ﬂ['(i (o)~ Ap ¥ (2]

&8
vxe Hey
from which one deduces t,‘r*.u?.[l}i

a) fho ('Ondi*ionb imposed by theorem 1 reduce to the only requirement

that 2 /,4 K < V( V}» H? orthogonal to unity and this leas to:
4 =9
e
i A
T ¢
=1

(3.6)

———————
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@)

o
b) Characterizing © amounts to finding a function y/E )‘/ (C)

which verifies the identity
S0 A x(z)- A X' (2 )] = <Y, Dy x Do
g V s /./q(c)

subject to the conditions (3.6) for then one has:

(‘3)
DG)G‘ o (// = (3.7)

(%)

with b/ an arbitrary constant and such an expression for will
o

contain (2n) arbitrary independent parameters.

s 14 z
Mac-Laurin developments of XCQ’) and X (Z'.,') with the rest

expressed in integral form yields:

- e .} 9_[ (q,
x (7. )= E Tc(f o Aot L) % 7:}}9/2
d:C’ /"/ C ((3_’]'/

s 972 (g) -

-1 (4] ik )z

X(Z) Z_c } (0) "% (ZL ")+ X NS
jer fietll c (§-2)/

Account for the 1dem1ty

T b B
(ZZ) _(-z)(z Z) +(? z)
-2
apply the binomial formula to CT,_' "Z) i and GL- 2 Z) and define:

J=£ I‘;ZJW - 0/ Z/(Z

™ e ’777./ J PR (m_/}/

m={

mzEo (3.8)
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—

=i
to obtain: [since B’o =0 upon eq. (3.6) and do = 0 by definition]:

< ‘f/ D‘j x>//o= ‘é [/7, x[?.;) * /[: )("/2'.;]:

= ;;’ [9/ f%] X(V(0)+ (3.9)
" _ ‘ §-2
% [Z Z '{.__(z (5 )+ /((,’ (Z“Z:i’}.f .«j/’ZJ rJp/»'»/ 7)((3‘/‘ &
L= ik iR e e Al
{ / G-t (s -2J.

with

~ it §-~! ) s o
N./" :Z~ /("(('- L) & ‘ji(_/jyg/_’ —'"‘}
Gl e G 2 Ll

(3.20)

Viz): z,_l s = le . o
L= K\? a/) / = (@] cf’

Only the first term on the right hand side of equation (3.9) must be further

. b : ©@
transformed to put it in the form of a scalar product in H @j

™~

ce, a4s proven in LLJ s the (absoute) con- |
tinuity of X (7‘) ror [£k 5‘5) limplies that:
/J’/ 2 . 0
S (dy vl [ o) =< Dex> ¥ xe Holc)
— (7 J /7Y e - e :

(3.11)
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where:
?-I

vie)z & ();' :
/ = ‘}‘

(3.12)

with the coefficient a’: such that:

/

g iy +rtl __ (3.13)

stsﬁ—/

Substitution of eq. (3.11) into eq. (3.9) shows that:

Al e 18(e)+ f(z)+ V()
4-z e @)., " seef

Hence, on account of eq. (3.7), the following characterization of

is obtained:

G“ﬁ[/' i (- &/+ /(él (z-z;‘?]*’ap‘z?‘
i@ e e e e

licre, upon eqs. (3.10) and (3.12):




'!'-1---n-n-unu-n-unnuu-uuu-q--nu-u-uunuuumu-u—nuu - - A -
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Vo %)
- .+ 9/ 5
TB g '—'b/l f(l) ( "?"A‘I ‘}-J—/ (3.15)
i SR

@%) £ &} =4

/

Of the (2n + q) coefficients ( '3 > = //{[/ /“: ) appearing in the
expression (3.14) for G'CQ)CT,) only (2n) are independent.
They are indeed related by eq. (3.6) and by the last (gq-1) equations
(3.15) which, on substituting b/f (for a#—' () from eq. (3.13)

cun be rewritten as:

Bt T i gret) /
& [ st}-t-rd _é(__,) @/t_d- T 9/4:—/' =0
=0 ' ) 7 (3.16)
I Cit). 5!
| ¢t < g
These equations for ( 2 < 4 < g - / ) express the vanishing of the

discontinuities of 6—(‘“ and of its first (q-3) derivatives at the

closure point, as the following Lemma shows:

Lemma

) (8
" The function § (Z ) and its firet ( q = 3 ) derivaties are

continuous on C "

Proof
Given the properties of polynomials and of the functions (2'— 2’,;)* the

stalement of the lemma needs to be proved only at the closure point |

In the interval ] 7,20, 27, [ eq. (3.1L4) reduces to

M Bp 2l et gt
= g g

~+ 4

G-1)! @G-2)/
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Iln the interval ]Tn, ¥ Lt ¢A CE-TC

@'Cé for any ( i ) so that,
on account of egs

. (3.10), eq. (3.1L4) yields:

§-
GB/(Z,’ = &

6 i ’/"
d, d"

The discontinuities of the (q + k)-th derivative at the closure point

are therefore given by

(upk)(P) C"sz}(ofj_ G(‘%*k]a-):
; _,z_

/| PEL L ¥ i g J
e / %”Zf‘“/ + (1) (9"}‘k 4 &{6}“/6'}-/ /]
“,I-: " Fiad ; 3 : AT .
o<k £8-3
or, with k + 1 = q - r:

Bedas £- thi' -
s ™ /(")--~.5’— ZB el () [e’/'e/*g/f‘/)/
) [0

(J+1). e

{3.17}

and comparison with eq. (3.16) commletes tha nroof of

of the 1emma,
The hermite ciosed spline functions

Sset '{?—Zaro obtaine

Erortrary constantes

A( ZJ corresponding to the

"y integrating equation (3.1L) q - times and using
to endorse ti

he continuity of s (2 ) and of
its first (q - 1) derivatives at the closure polnt e as to make A &

+5 L€ characterization of s

(T) given by eq. (2.2). On

y checks he the
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(2q = r - 1)-the derivatives at the closure point R are still
given by eqs. (3.17) with % now ranging from 2 to (2q - 1).
Hence imposing the continuity of s () and of its first (q - 1)
derivatives amounts to the statement that eqs. (3.16) must hold also
for (r) ranging from the value (q) [ corresponding to the condition
¢ (§-1) : :

5 ((«",):0 to the value (2q - 1) [correspondlng to the

- - 7 -
condition 8 §(P¢):0J. Equations (2.4) are thus proved.

This completes the proof of the statements made in paragraph (2).

In particular, equation (2.3) is the condition (3.6) and equation

(2.7) is the definition (3.4) of the subspace SHC
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